The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO₂.

نویسندگان

  • Ina C Meier
  • Seth G Pritchard
  • Edward R Brzostek
  • M Luke McCormack
  • Richard P Phillips
چکیده

While multiple experiments have demonstrated that trees exposed to elevated CO₂ can stimulate microbes to release nutrients from soil organic matter, the importance of root- versus mycorrhizal-induced changes in soil processes are presently unknown. We analyzed the contribution of roots and mycorrhizal activities to carbon (C) and nitrogen (N) turnover in a loblolly pine (Pinus taeda) forest exposed to elevated CO₂ by measuring extracellular enzyme activities at soil microsites accessed via root windows. Specifically, we quantified enzyme activity from soil adjacent to root tips (rhizosphere), soil adjacent to hyphal tips (hyphosphere), and bulk soil. During the peak growing season, CO₂ enrichment induced a greater increase of N-releasing enzymes in the rhizosphere (215% increase) than in the hyphosphere (36% increase), but a greater increase of recalcitrant C-degrading enzymes in the hyphosphere (118%) than in the rhizosphere (19%). Nitrogen fertilization influenced the magnitude of CO₂ effects on enzyme activities in the rhizosphere only. At the ecosystem scale, the rhizosphere accounted for c. 50% and 40% of the total activity of N- and C-releasing enzymes, respectively. Collectively, our results suggest that root exudates may contribute more to accelerated N cycling under elevated CO₂ at this site, while mycorrhizal fungi may contribute more to soil C degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhizosphere feedbacks in elevated CO(2).

Understanding rhizosphere processes in relation to increasing atmospheric CO(2) concentrations is important for predicting the response of forest ecosystems to environmental changes, because rhizosphere processes are intimately linked with nutrient cycling and soil organic matter decomposition, both of which feedback to tree growth and soil carbon storage. Plants grown in elevated CO(2) substan...

متن کامل

Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.

The degree to which rising atmospheric CO(2) will be offset by carbon (C) sequestration in forests depends in part on the capacity of trees and soil microbes to make physiological adjustments that can alleviate resource limitation. Here, we show for the first time that mature trees exposed to CO(2) enrichment increase the release of soluble C from roots to soil, and that such increases are coup...

متن کامل

Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2.

A common finding in multiple CO(2) enrichment experiments in forests is the lack of soil carbon (C) accumulation owing to microbial priming of 'old' soil organic matter (SOM). However, soil C losses may also result from the accelerated turnover of 'young' microbial tissues that are rich in nitrogen (N) relative to bulk SOM. We measured root-induced changes in soil C dynamics in a pine forest ex...

متن کامل

Root-induced changes in nutrient cycling in forests depend on exudation rates

(1) While it is well-known that trees release carbon (C) to soils as root exudates, the factors that control the magnitude and biogeochemical impacts of this flux are poorly understood. (2) We quantified root exudation and microbially-mediated nutrient fluxes in the rhizosphere for four ~80 year-old tree species in a deciduous hardwood forest, Indiana, USA. We hypothesized that trees that exude...

متن کامل

Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland.

Disturbance affects most terrestrial ecosystems and has the potential to shape their responses to chronic environmental change. Scrub-oak vegetation regenerating from fire disturbance in subtropical Florida was exposed to experimentally elevated carbon dioxide (CO₂) concentration (+350 μl l(-1)) using open-top chambers for 11 yr, punctuated by hurricane disturbance in year 8. Here, we report th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 205 3  شماره 

صفحات  -

تاریخ انتشار 2015